Python3入门机器学习 经典算法与应用轻松入行人工智能
bobo老师特为机器学习初学者量身打造,使用新版python3语言和流行的scikit-learn框架,算法与编程两翼齐飞,由浅入深,一步步的进入机器学习的世界。学到的不只是一门课程,更是不断思考的能力。
-
第1章 欢迎来到 Python3 玩转机器学习 试看
欢迎大家来到《Python3玩转机器学习》的课堂。在这个课程中,我们将从0开始,一点一点进入机器学习的世界。本门课程对机器学习领域的学习,绝不不仅仅只是对算法的学习,还包括诸如算法的评价,方法的选择,模型的优化,参数的调整,数据的整理,等等一系列工作。准备好了吗?现在开始我们的机器学习之旅!…
共 3 节 (48分钟)
- 1-1 什么是机器学习 (20:14)试看
- 1-2 课程涵盖的内容和理念 (13:25)试看
- 1-3 课程所使用的主要技术栈 (14:10)试看
-
第2章 机器学习基础
机器学习到底是什么鬼?这一章将带领大家深入理解机器学习的世界,让大家去熟悉那些看似陌生的专业术语。监督学习,非监督学习,半监督学习,增强学习,批量学习,在线学习,参数学习,非参数学习。看完这一章,这些概念你就统统了解啦。不仅如此,本章还包含相当深刻地和机器学习相关的哲学探讨,让你深入思索有关机器学习…
共 6 节 (90分钟) 收起列表
- 2-1 机器学习世界的数据 (18:27)
- 2-2 机器学习的主要任务 (16:00)
- 2-3 监督学习,非监督学习,半监督学习和增强学习 (17:38)
- 2-4 批量学习,在线学习,参数学习和非参数学习 (11:53)
- 2-5 和机器学习相关的“哲学”思考 (12:00)
- 2-6 课程使用环境搭建 (13:08)
-
第3章 Jupyter Notebook, numpy和matplotlib
工欲善其事,必先利其器。在本章,我们将学习和机器学习相关的基础工具的使用:Jupyter Notebook, numpy和matplotlib。大多数教程在讲解机器学习的时候,大量使用这些工具,却不对这些工具进行系统讲解。我特意添加了这个章节,让同学们在后续编写机器学习算法的过程中,更加得心应手!…
共 12 节 (208分钟)
- 3-1 Jupyter Notebook基础 (18:42)
- 3-2 Jupyter Notebook中的魔法命令 (20:51)
- 3-3 Numpy数据基础 (11:06)
- 3-4 创建Numpy数组(和矩阵) (19:16)
- 3-5 Numpy数组(和矩阵)的基本操作 (18:15)
- 3-6 Numpy数组(和矩阵)的合并与分割 (18:00)
- 3-7 Numpy中的矩阵运算 (23:11)
- 3-8 Numpy中的聚合运算 (13:19)
- 3-9 Numpy中的arg运算 (11:12)
- 3-10 Numpy中的比较和Fancy Indexing (22:36)
- 3-11 Matplotlib数据可视化基础 (18:05)
- 3-12 数据加载和简单的数据探索 (12:49
请先
!